18

Yoshioka, K., et al., A novel mouse model of soft-tissue infection using bioluminescence imaging allows noninvasive, real-time monitoring of bacterial growth. PLoS One, 2014. 9(9): p. e106367.

19

Degnan, P.H., et al., Human gut microbes use multiple transporters to distinguish vitamin B(1)(2) analogs and compete in the gut. Cell Host Microbe, 2014. 15(1): p. 47-57.

20

Dorrestein, P.C., S.K. Mazmanian, and R. Knight, Finding the missing links among metabolites, microbes, and the host. Immunity, 2014. 40(6): p. 824-32.

17

Roberts, M.E., et al., Lyn deficiency leads to increased microbiota-dependent intestinal inflammation and susceptibility to enteric pathogens. J Immunol, 2014. 193(10): p. 5249-63.

16

Mee, M.T., et al., Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci U S A, 2014. 111(20): p. E2149-56.

14

Hensel, M., et al., Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol, 1998. 30(1): p. 163-74.

15

Kurtz, J.R., et al., Vaccination with a single CD4 T cell peptide epitope from a Salmonella type III-secreted effector protein provides protection against lethal infection. Infect Immun, 2014. 82(6): p. 2424-33.

9

Palm, N.W., et al., Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell, 2014. 158(5): p. 1000-10.

10

Arnoldini, M., et al., Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol, 2014. 12(8): p. e1001928.

11

Munoz, M., et al., Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity, 2015. 42(2): p. 321-31.

12

Richaud, C., et al., Directed evolution of biosynthetic pathways. Recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli. J Biol Chem, 1993. 268(36): p. 26827-35.

13

Koenigsknecht, M.J., et al., Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect Immun, 2015. 83(3): p. 934-41.

4

Hepworth, M.R., et al., Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science, 2015. 348(6238): p. 1031-5.

5

Kamada, N., et al., Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host Microbe, 2015. 17(5): p. 617-27.

6

Stanton, M., et al., In vivo bacterial imaging without engineering; A novel probe-based strategy facilitated by endogenous nitroreductase enzymes. Curr Gene Ther, 2015. 15(3): p. 277-88.

7

Dahlgren, M.W., et al., T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol, 2015. 194(11): p. 5187-99.

8

Buffie, C.G., et al., Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 2015. 517(7533): p. 205-8.

1

Ohnmacht, C., et al., MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science, 2015. 349(6251): p. 989-93.

2

Seo, S.U., et al., Intestinal macrophages arising from CCR2(+) monocytes control pathogen infection by activating innate lymphoid cells. Nat Commun, 2015. 6: p. 8010.

3

Lindner, C., et al., Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol, 2015. 16(8): p. 880-8.